
1

Computer Networks
CS3611

Transport Layer-Part 3

Haiming Jin

The slides are adapted from those provided by Prof. J.F Kurose and K.W. Ross.

Transport Layer 3-2

Chapter 3 outline

 3.1 Transport-layer

services

 3.2 Multiplexing and

demultiplexing

 3.3 Connectionless

transport: UDP

 3.4 Principles of reliable

data transfer

 3.5 Connection-oriented

transport: TCP

 segment structure

 reliable data transfer

 flow control

 connection management

 3.6 Principles of congestion

control

 3.7 TCP congestion control

Transport Layer 3-4

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow in

same connection

• MSS (maximum segment
size): the largest amount
of data that can be placed
in a segment

▪ connection-oriented:
• handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange

▪ flow controlled:
• sender will not

overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
stream

▪ pipelined:
• TCP congestion and

flow control set window
size

Transport Layer 3-5

TCP: Overview

Transport Layer 3-7

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-9

TCP seq. numbers, ACKs

sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgement numbers:

• seq # of next byte
expected from other side

• cumulative ACK： TPC
only acknowledges bytes
up to the first missing
byte

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs

receipt of

‘C’, echoes
back ‘C’

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-10

TCP segment structure

Transport Layer 3-14

TCP round trip time, timeout

Q: how to set TCP
timeout value?

▪ longer than RTT

• but RTT varies

▪ too short: premature
timeout, unnecessary
retransmissions

▪ too long: slow reaction
to segment loss

Q: how to estimate RTT?
▪ SampleRTT: measured

time from segment
transmission until ACK
receipt

• ignore retransmissions （
why?)

▪ SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just
current SampleRTT

Transport Layer 3-15

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average
▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

Transport Layer 3-16

▪ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

▪ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-17

Chapter 3 outline

▪ 3.1 Transport-layer
services

▪ 3.2 Multiplexing and
demultiplexing

▪ 3.3 Connectionless
transport: UDP

▪ 3.4 Principles of reliable
data transfer

▪ 3.5 Connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ 3.6 Principles of congestion
control

▪ 3.7 TCP congestion control

Transport Layer 3-18

TCP reliable data transfer

▪ TCP creates rdt service
on top of IP’s unreliable
service
• pipelined segments

• cumulative acks

• single retransmission
timer

▪ retransmissions
triggered by:
• timeout events

• duplicate acks

let’s initially consider
simplified TCP sender:
• ignore duplicate acks

• flow control,
congestion control

Transport Layer 3-19

TCP sender events:

data rcvd from app:

▪ create segment with
seq #

▪ seq # is byte-stream
number of first data
byte in segment

▪ start timer if not
already running
• think of timer as for

oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:

▪ retransmit segment
that caused timeout

▪ restart timer

 ack rcvd:

▪ if ack acknowledges
previously unacked
segments
• update what is known

to be ACKed

• start timer if there are
still unacked segments

Transport Layer 3-20

TCP sender (simplified)

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum



create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

 start timer

data received from application above

retransmit not-yet-acked segment

with smallest seq. #
start timer

timeout

if (y > SendBase) {

 SendBase = y

 /* SendBase–1: last cumulatively ACKed byte */

 if (there are currently not-yet-acked segments)

 start timer

 else stop timer

 }

ACK received, with ACK field value y

Transport Layer 3-21

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-22

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-23

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other
segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq #.

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-24

TCP fast retransmit

▪ time-out period often
relatively long:
• long delay before

resending lost packet

▪ detect lost segments
via duplicate ACKs.
• sender often sends

many segments back-
to-back

• if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives triple

duplicate ACKs”, resend
unacked segment with
smallest seq #
▪ likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

Transport Layer 3-25

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-26

Chapter 3 outline

▪ 3.1 Transport-layer
services

▪ 3.2 Multiplexing and
demultiplexing

▪ 3.3 Connectionless
transport: UDP

▪ 3.4 Principles of reliable
data transfer

▪ 3.5 Connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ 3.6 Principles of congestion
control

▪ 3.7 TCP congestion control

Transport Layer 3-27

TCP flow control
application

process

TCP socket

receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may

remove data from
TCP socket buffers ….

… slower than TCP

receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

Transport Layer 3-28

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

▪ receiver “advertises” free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
• RcvBuffer size set via

socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

▪ sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

▪ guarantees receive buffer
will not overflow

receiver-side buffering

Transport Layer 3-29

Chapter 3 outline

▪ 3.1 Transport-layer
services

▪ 3.2 Multiplexing and
demultiplexing

▪ 3.3 Connectionless
transport: UDP

▪ 3.4 Principles of reliable
data transfer

▪ 3.5 Connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ 3.6 Principles of congestion
control

▪ 3.7 TCP congestion control

Transport Layer 3-30

Connection Management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing

to establish connection)

▪ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer 3-33

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-36

TCP: closing a connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

Transport Layer 3-37

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
 receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-38

Chapter 3 outline

▪ 3.1 Transport-layer
services

▪ 3.2 Multiplexing and
demultiplexing

▪ 3.3 Connectionless
transport: UDP

▪ 3.4 Principles of reliable
data transfer

▪ 3.5 Connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ 3.6 Principles of congestion
control

▪ 3.7 TCP congestion control

Transport Layer 3-39

congestion:
▪ informally: “too many sources sending too much

data too fast for network to handle”

▪ different from flow control!

▪ manifestations:

• lost packets (buffer overflow at routers)

• long delays (queueing in router buffers)

▪ a top-10 problem!

Principles of congestion control

Transport Layer 3-50

Chapter 3 outline

▪ 3.1 Transport-layer
services

▪ 3.2 Multiplexing and
demultiplexing

▪ 3.3 Connectionless
transport: UDP

▪ 3.4 Principles of reliable
data transfer

▪ 3.5 Connection-oriented
transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ 3.6 Principles of congestion
control

▪ 3.7 TCP congestion control

Transport Layer 3-51

TCP congestion control: additive increase
multiplicative decrease

▪ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS every
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

 T
C

P
 s

e
n
d
e

r

c
o

n
g
e

s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …

…. until loss occurs (then cut window in half)

time

Transport Layer 3-52

TCP Congestion Control: details

▪ sender limits transmission:

▪ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

▪ roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 3-53

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment



cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK



cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-54

TCP Slow Start

▪ when connection begins,
increase rate
exponentially until first
loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing
cwnd for every ACK
received

▪ summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 3-56

TCP: detecting, reacting to loss

▪ loss indicated by timeout:
• cwnd set to 1 MSS;

• begins slow start again until cwnd reaches threshold,
then grows linearly (i.e., enters congestion avoidance)

▪ loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of delivering
some segments

• cwnd is cut in half window and added in 3 MSS, then
enters the fast recovery stage

▪ TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks) and begins slow start again

Transport Layer 3-57

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

 Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to Congestion

Avoidance

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-58

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment



cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK



cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-60

TCP throughput

▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

▪ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 3-62

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-63

Why is TCP fair?

two competing sessions:
▪ additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-64

Fairness (more)

Fairness and UDP

▪ multimedia apps often
do not use TCP
• do not want rate

throttled by congestion
control

▪ instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

▪ application can open
multiple parallel
connections between
two hosts

▪ web browsers do this

▪ e.g., link of rate R with 9
existing connections:
• new app asks for 1 TCP, gets

rate R/10

• new app asks for 11 TCPs,
gets R/2

Transport Layer 3-65

network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router

to indicate congestion

▪ congestion indication carried to receiving host

▪ receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification (ECN)

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-66

Chapter 3: summary

▪ principles behind transport
layer services:

• multiplexing,
demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation,
implementation in the
Internet
• UDP

• TCP

next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network
“core”

▪ two network layer
chapters:
• data plane

• control plane

	Slide 1: Computer Networks CS3611
	Slide 2: Chapter 3 outline
	Slide 4: TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	Slide 5: TCP: Overview
	Slide 7: TCP segment structure
	Slide 9: TCP seq. numbers, ACKs
	Slide 10: TCP segment structure
	Slide 14: TCP round trip time, timeout
	Slide 15: TCP round trip time, timeout
	Slide 16: TCP round trip time, timeout
	Slide 17: Chapter 3 outline
	Slide 18: TCP reliable data transfer
	Slide 19: TCP sender events:
	Slide 20: TCP sender (simplified)
	Slide 21: TCP: retransmission scenarios
	Slide 22: TCP: retransmission scenarios
	Slide 23: TCP ACK generation [RFC 1122, RFC 2581]
	Slide 24: TCP fast retransmit
	Slide 25: TCP fast retransmit
	Slide 26: Chapter 3 outline
	Slide 27: TCP flow control
	Slide 28: TCP flow control
	Slide 29: Chapter 3 outline
	Slide 30: Connection Management
	Slide 33: TCP 3-way handshake
	Slide 36: TCP: closing a connection
	Slide 37: TCP: closing a connection
	Slide 38: Chapter 3 outline
	Slide 39: Principles of congestion control
	Slide 50: Chapter 3 outline
	Slide 51: TCP congestion control: additive increase multiplicative decrease
	Slide 52: TCP Congestion Control: details
	Slide 53: Summary: TCP Congestion Control
	Slide 54: TCP Slow Start
	Slide 56: TCP: detecting, reacting to loss
	Slide 57: TCP: switching from slow start to Congestion Avoidance
	Slide 58: Summary: TCP Congestion Control
	Slide 60: TCP throughput
	Slide 62: TCP Fairness
	Slide 63: Why is TCP fair?
	Slide 64: Fairness (more)
	Slide 65: Explicit Congestion Notification (ECN)
	Slide 66: Chapter 3: summary

