Computer Networks
CS3011

Transport Layer-Part 3
Haiming Jin

The slides are adapted from those provided by Prof. J.F Kurose and K.W. Ross.
1

Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of reliable
data transfer

3 3.5 Connection-oriented
transport: TCP

O segment structure

O reliable data transfer

o flow control

O connection management

3 3.6 Principles of congestion
control

3 3.7 TCP congestion control

Transport Layer 3-2

TC P: Ove I‘VieW RFCs: 793,1122,1323, 2018, 2581

" point-to-point: * full duplex data:
* one sender, one receiver * bi-directional data flow in
= reliable, in-order byte same connection
stream * MSS (maximum segment
. binelined: size): the largest amount
PIpP€lined. of data that can be placed
* TCP congestion and in a segment
flow control set window

" cohnhection-oriented:

* handshaking (exchange of
control msgs) inits sender,
receiver state before data
exchange

* flow controlled:

* sender will not

overwhelm receiver
Transport Layer 3-4

size

TCP: Overview

Process
reads data

Process
writes data

1
Socket

TCP | Segment — | Segment TCP
send receive
buffer buffer

Transport Layer 3-5

T

CP segment structure

32 bits

A

source port # dest port #

sequence number

acknowledgement number

head| not
len Jused

U|A|P|R S|F| receive window

checksum/ Urg data pointer

optiens (variable length)

/ application

Internet / data
checksum (variable length)

(as in UDP)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Transport Layer 3-7

TCP seq. numbers, ACKs

sequence numbers:

* byte stream “number” of
first byte in segment’ s
data

acknowledgement numbers:

* seq # of next byte
expected from other side

e cumulative ACK: TPC host ACKSs
nl receipt
only acknowledges bytes pecelpt
up to the first missing P

byte

Host B
Seq=42, ACK=79, data = ‘C
d\; host ACKs
/ receipt of
‘C’, echoes
Seq=79, ACK=43,data= ‘C’ | pack ‘C’
\
Seq=43, AC K:K

Transport Layer 3-9

TCP segment structure

File
|
Data for 1st segment Data for 2nd segment
| |
I I/ ” Ji I JL
"W " "
0 1 1,000 1,999 499,999
/s /s 1

Transport Layer 3-10

TCP round trip time, timeout

Q: how to set TCP
timeout value!

" longer than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

= SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions (
why?)

* SampleRTT will vary, want

estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-14

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
* influence of past sample decreases exponentially fast
= typical value:a =0.125

350 +

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

,UT 300 1
©
C
: \ li
g 250 1] . N 4
E
£
¢ sampleRTT
EstimatedRTT

100

T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-15

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

p | T

estimated RTT “safety margin”

Transport Layer 3-16

Chapter 3 outline

= 3.] Transport-layer
services

= 3.2 Multiplexing and
demultiplexing

= 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

= 3.5 Connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

Transport Layer 3-17

TCP reliable data transfer

= TCP creates rdt service
on top of IP” s unreliable
service

* pipelined segments
’ o e e .
e cumulative acks let” s initially consider

+ single retransmission simplified TCP sender:
timer * ignore duplicate acks

= retransmissions * flow control, |
triggered by: congestion contro

* timeout events
* duplicate acks

Transport Layer 3-18

TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

= start timer if not
already running
* think of timer as for

oldest unacked
segment

* expiration interval:
TimeOutlInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack revd:

" if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-19

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A SR start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field valuey

if (y > SendBase) {
SendBase =y

/* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-20

TCP: retransmission scenarios

I
(@
wn
—
>

da

e—— timeout —

Host B
\u

\

Seq=92, 8 bytes of data

_—
ACK=100

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host A Host B

SendBase=92 |~
‘ Seq=92, 8 bytes of data
\ \
§ Seq=100, 20 bytes of dat
£
I ACK=10/
l ACK=120
SendBase=100 Eeg =92f' S
ytes o data\

SendBase=120

\

ACK=120

\

SendBase=120

premature timeout

Transport Layer 3-21

TCP: retransmission scenarios

Host A

g

2

—

/

e ——— timeout

\
Seq=92, 8 bytes of data

ACK=100
X+ /

ACK=120
\

Seq=120, 15 bytes of data

cumulative ACK

Host B
\ul

\
Seq=100, 20 bytes@dg

Transport Layer 3-22

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment iImmediately send duplicate ACK,
higher-than-expect seq #. indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-23

TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

* sender often sends
many segments back-
to-back

* if segment is lost, there
will likely be many
duplicate ACKs.

— TCP fast retransmit—

if sender receives triple
duplicate ACKs”, resend
unacked segment with
smallest seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-24

TCP fast retransmit
Host A Host B
A/ »

timeout

R 4

receipt of triple duplicate ACK

— Seq=92, 8 bytes of data

\Seq =100, 2 f data
\X

ACK=100

ACK=100
“ﬂcloo

-
ACK=100
re

TSeq=100, 20 bytes of data

&~

\ 4

fast retransmit after sender

Transport Layer 3-25

Chapter 3 outline

= 3.] Transport-layer
services

= 3.2 Multiplexing and
demultiplexing

= 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

= 3.5 Connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

Transport Layer 3-26

TCP flow control

application may

application
process

remove data from

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

TCP socket
receiver buffers

TCP
code

IP

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

code @
..' 1Y |

I I !
from sender|

receiver protocol stack

Transport Layer 3-27

TCP flow control

. 13 . 7
" receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender
segments Rchufier buffered data
* RcvBuffer size setvia T

TCP segment payloads

socket options (typical default rwnd
is 4096 bytes) |

° many operating systems
autoadjust RcvBuffer
" sender I|m|ts amount of

unacked (in-flight”) data to
receiver s rwnd value

" guarantees receive buffer
will not overflow

recelver-side buffering

Transport Layer 3-28

Chapter 3 outline

= 3.] Transport-layer
services

= 3.2 Multiplexing and
demultiplexing

= 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

= 3.5 Connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

Transport Layer 3-29

Connection Management

before exchanging data, sender/receiver “handshake”:

= agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection Parameters

application
I
connection state: ESTAB
connection Variables:
seq # dient-to-server
server-to-client
rcvBuffer Size
at server,client

application

connection state: ESTAB
connection variables:
seq # dient-to-server
server-to-client
rcvBuffer size
at server,dient

]
network network i
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept() ;
number") ;

Transport Layer 3-30

TCP 3-way handshake

client state

LISTEN

SYNSENT

v received SYNACK(X)
indicates server is live;

ESTAB send ACK for SYNACK;
this segment may contain
client-to-server data

g

choose init seq num, x
send TCP SYN msg

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

_—
~—

ACKbit=1, ACKnum=y+1

\

choose init seq num, y
send TCP SYNACK

msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

Transport Layer 3-33

TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

" respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN

Transport Layer 3-36

TCP: closing a connection

client state V'/ E server state
ESTAB B ESTAB
clientSocket.close() \FINb.t 1
FIN_WAIT_1 can no longer it=1, seq=x
send but can q\ v
receive data _— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN_ WAIT 2 wait for server —" cend data
close
—— LAST_ACK
v A/FLNbit= 1, seq=y
TIMED WAIT —_ can no longer
B ‘ —~—— send data
ACKbit=1; ACKnum=y+1
timed wait ~—~—— v
for 2*max CLOSED
segment lifetime

CLOSED J,

Transport Layer 3-37

Chapter 3 outline

= 3.] Transport-layer
services

= 3.2 Multiplexing and
demultiplexing

= 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

= 3.5 Connection-oriented
transport: TCP
* segment structure
 reliable data transfer
e flow control
* connection management

" 3.6 Principles of congestion
control

= 3.7 TCP congestion control

Transport Layer 3-38

PrinciEIes of congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle

» different from flow control!
®" manifestations:
* lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
= a top-10 problem!

Transport Layer 3-39

Chapter 3 outline

= 3.] Transport-layer
services

= 3.2 Multiplexing and
demultiplexing

= 3.3 Connectionless
transport: UDP

= 3.4 Principles of reliable
data transfer

= 3.5 Connection-oriented
transport: TCP
* segment structure
* reliable data transfer
* flow control
* connection management

= 3.6 Principles of congestion
control

= 3.7 TCP congestion control

Transport Layer 3-50

TCP congestion control: additive increase
multiplicative decrease
" agpproach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-51

TCP Congestion Control: details

sender sequence number space

«— cwnd — TCP sending rate:
IIII\IIII IIIIII * roughly send cwnd
bytes, wait RTT for
B - ACKS, then send
yet ACKed more bytes
ot/
1(’Iiéht”)
= sender limits transmission: rate w bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-52

S

U

duplicate ACK
dupACKcount++

A m
cwnd =1 MSS
ssthresh = 64 KB

dupACKcount =0

mmary: T CP Congestion Control

new ACt " ZA A n
cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

new ACK
cwnd = cwnd+MSS

dupACKcount =0

transmit new segment(s), as allowed

cwnd > ssthresh

FQ’;\Q\ . </
,l € {)] t|meout

ssthresh = cwnd/2
cwnd =1 MSS

A | -
<~ i
(PH]Q‘ timeout
' Q‘ »?)‘ thresh = cwnd/2
Sscwrﬁg = 1C|\\;|Vsns duplicate ACK

dupACKcount=10

ALRCC dupACKcount++
retransmit missing segment

dupACKcount=0 ﬁp"‘\o\
retransmit missing segment e “p D
timeout ‘)
ssthresh = cwnd/2 plg ~
cwnd =1 New ACK
dupACKcount= 0 “wnd = ssihresh
dupACKcount == retransmit missing segment cwnd = ssthres dupACKcount == 3

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS
retransmit missing segment

dupACKcount=0

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS

retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-53

TCP Slow Start

* when connection begins,
Increase rate
exponentially until first
loss event:

* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

" summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-54

TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* begins slow start again until cwnd reaches threshold,
then grows linearly (i.e., enters congestion avoidance)

" |oss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKSs indicate network capable of delivering
some segments

e cwnd is cut in half window and added in 3 MSS, then
enters the fast recovery stage

= TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks) and begins slow start again

Transport Layer 3-56

TCP: switching from slow start to Congestion
Avoidance
Q: when should the

exponential 16+
increase switch to 14—
linear? '§"‘ - TCP Reno
c 3
. = c 10—
A' When Cwnd gets ; qg glssthresh -~
to |/2 of its value ge | 4
before timeout. £ 2 ssthresh
5 —TCP Tahoe
. 0
Implementatlon: 01 2 3456 7 8 910111213 14 15

Transmission round

= variable ssthresh

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_rossfinteractive/ Transport Layer 3-57

S

U

duplicate ACK
dupACKcount++

A m
cwnd =1 MSS
ssthresh = 64 KB

dupACKcount =0

mmary: T CP Congestion Control

new ACt " ZA A n
cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

new ACK
cwnd = cwnd+MSS

dupACKcount =0

transmit new segment(s), as allowed

cwnd > ssthresh

FQ’;\Q\ . </
,l € {)] t|meout

ssthresh = cwnd/2
cwnd =1 MSS

A | -
<~ i
(PH]Q‘ timeout
' Q‘ »?)‘ thresh = cwnd/2
Sscwrﬁg = 1C|\\;|Vsns duplicate ACK

dupACKcount=10

ALRCC dupACKcount++
retransmit missing segment

dupACKcount=0 ﬁp"‘\o\
retransmit missing segment e “p D
timeout ‘)
ssthresh = cwnd/2 plg ~
cwnd =1 New ACK
dupACKcount= 0 “wnd = ssihresh
dupACKcount == retransmit missing segment cwnd = ssthres dupACKcount == 3

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS
retransmit missing segment

dupACKcount=0

ssthresh= cwnd/2
cwnd = ssthresh + 3MSS

retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-58

TCP throughput

" avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window size (measured in bytes) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4WV per RTT

avg TCP thruput = % % bytes/sec

N1244%%

Transport Layer 3-60

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

IN e

N/ bottleneck
ﬂ router

TCP connection 2 capacity R

Transport Layer 3-62

Why is TCP fair?

two competing sessions:
= additive increase gives slope of |, as throughout increases
* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput g

Connection 1 throughput R

Transport Layer 3-63

Fairness gmorez

Fairness and UDP

* multimedia apps often
do not use TCP

e do not want rate
throttled by congestion
control

= instead use UDP:

* send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

= application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g, link of rate R with 9
existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for | | TCPs,
gets R/2

Transport Layer 3-64

Explicit Congestion Notification (ECN)

network-assisted congestion control:

= two bits in IP header (ToS field) marked by network router
to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

source -9) ACK segment destination
:
| L E
ECN=00
IP datagram

Transport Layer 3-65

Chapter 3: summary

= principles behind transport

layer services: next:

* multiplexing,

, , " |eaving the network
demultiplexing

“edge” (application,

* reliable data transfer transport layers)
* flow control = into the network
* congestion control “core”
® instantiation, = two network layer
implementation in the chapters:
Internet * data plane
« UDP * control plane

+ TCP

Transport Layer 3-66

	Slide 1: Computer Networks CS3611
	Slide 2: Chapter 3 outline
	Slide 4: TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	Slide 5: TCP: Overview
	Slide 7: TCP segment structure
	Slide 9: TCP seq. numbers, ACKs
	Slide 10: TCP segment structure
	Slide 14: TCP round trip time, timeout
	Slide 15: TCP round trip time, timeout
	Slide 16: TCP round trip time, timeout
	Slide 17: Chapter 3 outline
	Slide 18: TCP reliable data transfer
	Slide 19: TCP sender events:
	Slide 20: TCP sender (simplified)
	Slide 21: TCP: retransmission scenarios
	Slide 22: TCP: retransmission scenarios
	Slide 23: TCP ACK generation [RFC 1122, RFC 2581]
	Slide 24: TCP fast retransmit
	Slide 25: TCP fast retransmit
	Slide 26: Chapter 3 outline
	Slide 27: TCP flow control
	Slide 28: TCP flow control
	Slide 29: Chapter 3 outline
	Slide 30: Connection Management
	Slide 33: TCP 3-way handshake
	Slide 36: TCP: closing a connection
	Slide 37: TCP: closing a connection
	Slide 38: Chapter 3 outline
	Slide 39: Principles of congestion control
	Slide 50: Chapter 3 outline
	Slide 51: TCP congestion control: additive increase multiplicative decrease
	Slide 52: TCP Congestion Control: details
	Slide 53: Summary: TCP Congestion Control
	Slide 54: TCP Slow Start
	Slide 56: TCP: detecting, reacting to loss
	Slide 57: TCP: switching from slow start to Congestion Avoidance
	Slide 58: Summary: TCP Congestion Control
	Slide 60: TCP throughput
	Slide 62: TCP Fairness
	Slide 63: Why is TCP fair?
	Slide 64: Fairness (more)
	Slide 65: Explicit Congestion Notification (ECN)
	Slide 66: Chapter 3: summary

